24 research outputs found

    Towards Autonomous Selective Harvesting: A Review of Robot Perception, Robot Design, Motion Planning and Control

    Full text link
    This paper provides an overview of the current state-of-the-art in selective harvesting robots (SHRs) and their potential for addressing the challenges of global food production. SHRs have the potential to increase productivity, reduce labour costs, and minimise food waste by selectively harvesting only ripe fruits and vegetables. The paper discusses the main components of SHRs, including perception, grasping, cutting, motion planning, and control. It also highlights the challenges in developing SHR technologies, particularly in the areas of robot design, motion planning and control. The paper also discusses the potential benefits of integrating AI and soft robots and data-driven methods to enhance the performance and robustness of SHR systems. Finally, the paper identifies several open research questions in the field and highlights the need for further research and development efforts to advance SHR technologies to meet the challenges of global food production. Overall, this paper provides a starting point for researchers and practitioners interested in developing SHRs and highlights the need for more research in this field.Comment: Preprint: to be appeared in Journal of Field Robotic

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    A cable driven material handling robot for agricultural sector

    No full text
    by Thejas Narayanan, Vishnu S. Rajendran and Vineet Vashist

    A cable driven parallel robot for coconut farm

    No full text
    by Thejas Narayanan, Rajendran S. Vishnu, Rao R. Bhavani, Ratnakar Singh and Vineet Vashist

    Not Available

    No full text
    Not AvailableMannheimia haemolytica is a leading causative agent of pasteurellosis in ruminants. Genome of M. haemolytica strains from different hosts has been sequenced worldwide to understand its pathogenesis. There are only few reports on the isolation of M. haemolytica in India with limited information on its molecular characteristics. The present study focuses on genome sequence analysis of a M. haemolytica strain isolated from pneumonic sheep. Mannheimia haemolytica A2 strain NIVEDI/MH/1 was isolated and identified by species and serotype-specific PCRs. Whole genome sequencing was performed using the Ion Torrent Personal Genome Machine. A comparative genomic analysis was performed to understand the virulence determinants of the Indian strain and its phylogenetic relationship with other global strains. Sequence data revealed a draft genome of 2,211,426 bp size with 41.3% GC content, assembled into 17 contigs, and contained 2379 genes. Five genomic islands identified in the genome showed high sequence identity with other respiratory pathogens of the Pasteurellaceae family. Phylogenetic analysis showed M. haemolytica A2 NIVEDI/MH/1 is very close to a M. haemolytica A2 strain from pneumonic calf. Further, the analysis revealed the presence of virulence, metal-, and multidrug resistance genes needed for pathogenesis and survival of the bacteria during infection. Also, we identified the presence of type I-C and type II-C of CRISPR-Cas arrays in the present sequenced genome. The study emphasizes the role of M. haemolytica in respiratory infections of ruminants in the Indian subcontinent and indicates the role of vertical and horizontal gene pools in pathogenicity and survivability of the bacteria.Not Availabl

    Emerging technologies for antibiotic susceptibility testing

    No full text
    Superbugs such as infectious bacteria pose a great threat to humanity due to an increase in bacterial mortality leading to clinical treatment failure, lengthy hospital stay, intravenous therapy and accretion of bacteraemia. These disease-causing bacteria gain resistance to drugs over time which further complicates the treatment. Monitoring of antibiotic resistance is therefore necessary so that bacterial infectious diseases can be diagnosed rapidly. Antimicrobial susceptibility testing (AST) provides valuable information on the efficacy of antibiotic agents and their dosages for treatment against bacterial infections. In clinical laboratories, most widely used AST methods are disk diffusion, gradient diffusion, broth dilution, or commercially available semi-automated systems. Though these methods are cost-effective and accurate, they are time-consuming, labour-intensive, and require skilled manpower. Recently much attention has been on developing rapid AST techniques to avoid misuse of antibiotics and provide effective treatment. In this review, we have discussed emerging engineering AST techniques with special emphasis on phenotypic AST. These techniques include fluorescence imaging along with computational image processing, surface plasmon resonance, Raman spectra, and laser tweezer as well as micro/nanotechnology-based device such as microfluidics, microdroplets, and microchamber. The mechanical and electrical behaviour of single bacterial cell and bacterial suspension for the study of AST is also discussed
    corecore